Physics: Amazing: Only 1% of chemicals in the universe have been discovered. Here’s how scientists are hunting for the rest

[This is amazingly fascinating. I did not know this. This means that lots of weird compounds may exist all over the universe in varying quantities and they might cause all kinds of strange phenomena! This is really great actually. There could be a lot of "magic" out there in the universe working in ways we can't even conceive! Jan]

Most chemical compouds are still unknown to science. How many new ones can we make by combining elements from the periodic table?

The universe is flooded with billions of chemicals, each a tiny pinprick of potential. And we’ve only identified 1% of them. Scientists believe undiscovered chemical compounds could help remove greenhouse gases, or trigger a medical breakthrough much like penicillin did.

But let’s just get this out there first: it’s not that chemists aren’t curious. Since Russian chemist Dmitri Mendeleev invented the periodic table of elements in 1869, which is basically a chemist’s box of Lego, scientists have been discovering the chemicals that helped define the modern world. We needed nuclear fusion (firing atoms at each other at the speed of light) to make the last handful of elements. Element 117, tennessine, was synthesised in 2010 in this way.

But to understand the full scale of the chemical universe, you need to understand chemical compounds too. Some occur naturally — water, of course, is made of hydrogen and oxygen. Others, such as nylon, were discovered in lab experiments and are manufactured in factories.

Elements are made of one type of atom, and atoms are made of even tinier particles including electrons and protons. All chemical compounds are made of two or more atoms. Although it’s possible there are undiscovered elements left to find, it’s unlikely. So, how many chemical compounds can we make with the 118 different sorts of element Lego blocks we currently know?

Big numbers
We can start by making all the two-atom compounds. There are lots of these: N2 (nitrogen) and O2 (oxygen) together make up 99% of our air. It would probably take a chemist about a year to make one compound and there are 6,903 two-atom compounds in theory. So that’s a village of chemists working a year just to make every possible two-atom compound.

There about 1.6 million three-atom compounds like H20 (water) and C02 (carbon dioxide), which is the population of Birmingham and Edinburgh combined. Once we reach four- and five-atom compounds, we would need everyone on Earth to make three compounds each. And to make all these chemical compounds, we’d also need to recycle all the materials in the universe several times over.

But this is a simplification, of course. Things such as the structure of a compound and its stability can make it more complex and difficult to make.

The biggest chemical compound that has been made so far was made in 2009 and has nearly 3 million atoms. We’re not sure what it does yet, but similar compounds are used to protect cancer drugs in the body until they get to the right place.

But wait, chemistry has rules!

Surely not all those compounds are possible?
It’s true there are rules — but they are kind of bendy, which creates more possibilities for chemical compounds.

Even the solitary "noble gases" (including neon, argon and xenon and helium), which tend to not bind with anything, sometimes form compounds. Argon hydride, ArH+ does not exist naturally on Earth but has been found in space. Scientists have been able to make synthetic versions in laboratories that replicate deep space conditions. So, if you include extreme environments in your calculations, the number of possible compounds increases.

Carbon normally likes being attached to between one and four other atoms, but very occasionally, for short periods of time, five is possible. Imagine a bus with a maximum capacity of four. The bus is at the stop, and people are getting on and off; while people are moving, briefly, you can have more than four people actually on the bus.

Some chemists spend their entire careers trying to make compounds that, according to the chemistry rulebook, shouldn’t exist. Sometimes they are successful.

Another question scientists have to grapple with is whether the compound they want can only exist in space or extreme environments — think of the immense heat and pressure found at hydrothermal vents, which are like geysers but on the ocean floor.

How scientists search for new compounds
Often the answer is to search for compounds that are related to ones that are already known. There are two main ways to do this. One is taking a known compound and changing it a bit — by adding, deleting or swapping some atoms. Another is taking a known chemical reaction and using new starting materials. This is when the method of creation is the same but the products may be quite different. Both of these methods are ways of searching for known unknowns.

Coming back to Lego, it’s like making a house, then a slightly different house, or buying new bricks and adding a second storey. A lot of chemists spend their careers exploring one of these chemical houses.

But how would we search for truly new chemistry — that is, unknown unknowns?

One way chemists learn about new compounds is to look at the natural world. Penicillin was found this way in 1928, when Alexander Fleming observed that mould in his petri dishes prevented the growth of bacteria.

Over a decade later, in 1939, Howard Florey worked out how to grow penicillin in useful amounts, still using mould. But it took even longer, until 1945, for Dorothy Crowfoot Hodgkin to identify penicillin’s chemical structure.

That’s important because part of penicillin’s structure contains atoms arranged in a square, which is an unusual chemical arrangement that few chemists would guess, and is difficult to make. Understanding penicillin’s structure meant we knew what it looked like and could search for its chemical cousins. If you’re allergic to penicillin and have needed an alternative antibiotic, you have Crowfoot Hodgkin to thank.

Nowadays, it’s a lot easier to determine the structure of new compounds. The X-ray technique that Crowfoot Hodgkin invented on her way to identifying penicillin’s structure is still used worldwide to study compounds. And the same MRI technique that hospitals use to diagnose disease can also be used on chemical compounds to work out their structure.

But even if a chemist guessed a completely new structure unrelated to any compound known on Earth, they’d still have to make it, which is the hard part. Figuring out that a chemical compound could exist does not tell you how it’s structured or what conditions you need to make it.

For many useful compounds, like penicillin, it’s easier and cheaper to "grow" and extract them from moulds, plants or insects. Thus the scientists searching for new chemistry still often look for inspiration in the tiniest corners of the world around us.

Source: https://www.livescience.com/chemistry/only-1-of-chemicals-in-the-universe-have-been-discovered-heres-how-scientists-are-hunting-for-the-rest?utm_term=23709803-D360-4259-9C73-BE4FF46B5C71&lrh=eeb99ac19903b638bde682c575bd3d0872a9ced83f83db97fc733a25835de83a&utm_campaign=368B3745-DDE0-4A69-A2E8-62503D85375D&utm_medium=email&utm_content=CA402D23-BE90-4F1B-AFB0-8D53771391D5&utm_source=SmartBrief

Space: New European Invention: Fuel-Free satellites that have wings! – Spain’s new cubesats will fly in space like a flock of geese

[The European Race never stops inventing. Jan]

Three fuel-free spacecraft will use algorithms and fringes of atmosphere to guide flight.

Europe’s next launch will send a trio of CubeSats to Earth’s orbit that mimic birds flying in formation.

The endeavor, dubbed Advanced Nanosatellite Systems for Earth-observation Research, or ANSER, consists of three shoebox-sized satellites that will monitor Iberian waters as if they are a single, standard-sized satellite.

Launching on an Arianespace Vega-C rocket from Europe’s Guiana Space Center on Oct. 4, the CubeSats will operate about 500 kilometers (310 miles) above Earth, maintaining an optimum distance of 10 km (6.2 miles) apart from each other. Notably, however, the spacecraft will not have onboard propulsion systems to keep them in formation.

Instead the satellites will use their wing-like flaps, which extend their wingspan by about six times, to maintain their relative positions. These flaps exploit the tenuous airflow at the fringe of Earth’s atmosphere to control the satellites’ positions.

"ANSER is also the Latin name for the wild goose, a good example of birds flying in formation, adopting a leader-follower protocol, which is what our mission is emulating," Santiago Rodriguez Bustabad, who is overseeing the mission at the Spanish Institute of Aerospace Technology (INTA), said in an ESA statement.

Rodriguez Bustabad explains that the trio will use a special navigation mechanism – developed for this mission in particular, known as "Differential Lift and Drag" maneuvers. For example, with these maneuvers, a spacecraft can increase its drag effect to produce a significant relative movement in orbit, maintaining control over the formation.

The CubeSats carry a fractionated hyperspectral imager named CINCLUS which is distributed across the three spacecraft. This and other cameras will seek to detect pollution or harmful microorganisms in waters down on Earth.

Rodriguez Bustabad notes that very small satellites, such as CubeSats or nanosats, have become more capable in recent years, with miniaturized sensors and components and lower cost to launch. But these still have limitations, such as in terms of power and resolution.

"To have a real chance of achieving an operational Earth-observing mission we are leaning into distributed systems in the form of clusters and constellations," Rodriguez Bustabad said, "together with miniaturization."

ANSER’s launch will be facilitated by Vega’s Small Spacecraft Mission Service. This ride-sharing service is part of the European Commission’s In-Orbit Demonstration/In-Orbit Validation program aimed at testing new space technologies.

The main payload for the launch will be THEOS-2 (Thailand Earth Observation System-2), along with FORMOSAT-7R/TRITON, developed by the Taiwanese Space Agency (TASA).

Source: https://www.space.com/spain-cubesat-fly-in-formation-like-geese?utm_term=AF536F6D-055D-443A-91F7-FD448D0CCA73&utm_campaign=58E4DE65-C57F-4CD3-9A5A-609994E2C5A9&utm_medium=email&utm_content=809EACD6-7D32-4AF6-ABA5-930E127BD655&utm_source=SmartBrief

Scientists catch real-life Death Star devouring a planet in 1st-of-its-kind discovery

The action 12,000 light-years away may presage what happens to Earth about 5 billion years from now.

Astronomers may have for the first time witnessed a sun-like star devouring a planet, shedding light on the fate that will befall Earth in about four billion years when our dying sun swells to engulf our world, a new study finds.

By analyzing countless stars during various stages of their evolution, astronomers have discovered that as our sun and stars like it near the ends of their lives, they begin to exhaust their primary source of fuel, the hydrogen near their cores. This leads their cores to contract and their outer shells to expand and cool. During this "red giant" phase, these stars may billow out anywhere from 100 to 1,000 times their original diameter, swallowing closely orbiting planets.

"We know that this must happen to all planets that are orbiting at distances smaller than that of the Earth, but it was considered extremely challenging to provide experimental evidence for this," study lead author Kishalay De, an astrophysicist at the Massachusetts Institute of Technology, told Space.com.

For decades, scientists have detected evidence of stars just before and shortly after the act of consuming planets. However, researchers had never caught a star in the act until now, De explained.

"Honestly, one of the biggest surprises for me was that we found it in the first place," De said in an email. "Planetary engulfment has been a fundamental prediction in our understanding of stars and planets, but their frequency have been very uncertain. So finding a potentially rare event for the first time is always exciting."

In the new study, De and his colleagues made their breakthrough after examining a burst of radiation dubbed ZTF SLRN-2020, which took place in 2020 in the Milky Way’s disk about 12,000 light-years away, near the constellation Aquila. During the event, a star brightened by a factor of 100 over the course of a week.

"The work started back in 2020 when I was not looking for this type of event, actually," De said. "I was looking for a much more common type of outburst called novae." Novas are stellar explosions that can happen when a red giant pours fuel onto a companion white dwarf star.

The initial discovery was made by analyzing data collected by the Zwicky Transient Facility, run at the California Institute of Technology’s Palomar Observatory. The Zwicky Transient Facility scans the sky for stars that rapidly change in brightness, which could be events such as novas.

To learn more about ZTF SLRN-2020, De analyzed the spectrum of light from the bright outburst. "That’s when I was surprised to see that unlike a nova, which has hot gas around it, this source was primarily surrounded by cool gas," he said.

Cool gas from such bursts often results from merging stars, De explained. When he followed up by looking at data from the same star collected by the Keck Observatory in Hawaii, he also found molecules that can only exist at very cold temperatures.

Click here for more Space.com videos…
Cold gas can condense to form dust over time. About a year after the initial discovery, De and his colleagues analyzed data from the same star, this time collected using an infrared camera at the Palomar Observatory. Infrared data can yield signals of colder material, in contrast to bright visible light signals that often come from novas and other powerful events.

The scientists found the brief outburst of visible light from the star was accompanied by extraordinarily bright near-infrared light signals that slowly faded over the course of six months. This confirmed De’s suspicion "that this source had indeed formed a lot of dust," he said.

The final piece of the puzzle came when the researchers examined data collected by NASA’s infrared space telescope, NEOWISE. This suggested the total amount of energy the star released since its initial outburst was surprisingly small — about a thousandth the magnitude of any stellar merger observed in the past.

"That means that whatever merged with the star has to be 1,000 times smaller than any other star we’ve seen," De said in a statement. "And it’s a happy coincidence that the mass of Jupiter is about one-thousandth the mass of the sun. That’s when we realized: This was a planet, crashing into its star."

Based on the nature of the outburst, the astronomers estimated the event released hydrogen equal to about 33 times the Earth’s mass, as well as about 0.33 Earth-masses of dust. From this, they suggest the progenitor star was about 0.8 to 1.5 times the mass of our sun and the engulfed planet was about 1 to 10 times the mass of Jupiter.

Earth is expected to meet a similar fate when the sun becomes a red giant in about 5 billion years.

"If I was sitting on a planet 10,000 light years away, I would basically see a similar flash of light from the solar system — a bit subdued compared to this one because the Earth is much less massive than a planet like Jupiter, which is what we believe was involved in this event — which puts the significance of this discovery into a human perspective," De said.

There are many questions this discovery raises. "Did the planet survive the plunge, or did it get annihilated into the stellar material during the plunge?" De said. "Did the planet come into contact with the stellar surface because of the star’s natural expansion, or did something give it an ever-so-slight push to go close to the star? All these questions will become clear as we get more data on this object and find more events in the future."

Now that scientists know what planetary engulfment likely looks like, "we can look for similar events in the future, especially as infrared surveys become increasingly common in the next decade," De said. "We can also go back into this system and see what the star looks like. Was it polluted by the planet? Was it spun up because of the energetic eruption? More importantly, the data itself provides a foundational starting point for theory to try and understand how planets themselves affect their host stars."

The scientists detailed their findings online today (May 3) in the journal Nature.

Source: https://www.space.com/astronomers-spot-star-devouring-planet?utm_term=AF536F6D-055D-443A-91F7-FD448D0CCA73&utm_campaign=58E4DE65-C57F-4CD3-9A5A-609994